Graphs are everywhere...

Graphs in Reality
- Graphs model objects and their relationships.
- Also referred to as *networks*.
- All common data structures can be modelled as graphs.

Graphs in Bioinformatics
- Molecular Biology studies relationship between molecular components.
- Graphs are ideal to model these:
 - Molecules
 - Protein-protein interaction networks
 - Metabolic networks
How similar are two graphs?

Graph similarity is the central problem for all learning tasks such as clustering and classification on graphs.

Applications

Function prediction for molecules, in particular proteins
Comparison of protein-protein interaction networks

Challenges

Subgraph isomorphism is NP-complete.
Comparing graphs via isomorphism checking is thus prohibitively expensive!
Graph kernels offer a faster, yet principled alternative.
Definition of a Graph

A graph G is a set of nodes (or vertices) V and edges E, where $E \subset V^2$.

An attributed graph is a graph with labels on nodes and/or edges; we refer to labels as attributes.

The adjacency matrix A of G is defined as

$$[A]_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E, \\ 0 & \text{otherwise} \end{cases},$$

where v_i and v_j are nodes in G.

A walk w of length $k - 1$ in a graph is a sequence of nodes $w = (v_1, v_2, \cdots, v_k)$ where $(v_{i-1}, v_i) \in E$ for $1 \leq i \leq k$.

w is a path if $v_i \neq v_j$ for $i \neq j$.
Graph isomorphism (cp Skiena, 1998)

Find a mapping \(f \) of the vertices of \(G \) to the vertices of \(H \) such that \(G \) and \(H \) are identical; i.e. \((x, y)\) is an edge of \(G \) iff \((f(x), f(y))\) is an edge of \(H \). Then \(f \) is an isomorphism, and \(G \) and \(F \) are called isomorphic.

No polynomial-time algorithm is known for graph isomorphism.

Neither is it known to be NP-complete

Subgraph isomorphism

Subgraph isomorphism asks if there is a subset of edges and vertices of \(G \) that is isomorphic to a smaller graph \(H \).

Subgraph isomorphism is NP-complete
Subgraph Isomorphism

NP-completeness
- A decision problem C is NP-complete, iff
- C is in NP
- C is NP-hard, i.e. every other problem in NP is reducible to it.

Problems for the practitioner
- Excessive runtime in worst case
- Runtime may grow exponentially with number of nodes
- For large graphs with many nodes, and
- For large datasets of graphs
- this is an enormous problem

Wanted Polynomial-time similarity measure for graphs
Graph kernels

- Compare substructures of graphs that are computable in polynomial time
- Examples: walks, paths, cyclic patterns, trees

Criteria for a good graph kernel

- Expressive
- Efficient to compute
- Positive definite
- Applicable to wide range of graphs
Random Walks

Principle

- Compare walks in two input graphs (Kashima et al., 2003; Gärtner et al., 2003)
- Walks are sequences of nodes that allow repetitions of nodes

Important trick

- Walks of length k can be computed by taking the adjacency matrix A to the power of k
- $A^k(i, j) = c$ means that c walks of length k exist between vertex i and vertex j
How to find common walks in two graphs?

Another trick: Use the Product Graph of G_1 and G_2

Definition

$G_\times = (V_\times, E_\times)$, defined via

$$V_\times(G_1 \times G_2) = \{ (v_1, w_1) \in V_1 \times V_2 : \text{label}(v_1) = \text{label}(w_1) \}$$

$$E_\times(G_1 \times G_2) = \{ ((v_1, w_1), (v_2, w_2)) \in V^2(G_1 \times G_2) : (v_1, v_2) \in E_1 \land (w_1, w_2) \in E_2 \land (\text{label}(v_1, v_2) = \text{label}(w_1, w_2)) \}$$

Meaning

Product graph consists of pairs of identically labeled nodes and edges from G_1 and G_2
Random walk kernel

The trick

Common walks can now be computed from A^k_{\times}

Definition of random walk kernel

$\kappa_{\times}(G_1, G_2) = \sum_{i,j=1}^{V_{\times}} \left[\sum_{n=0}^{\infty} \lambda^n A^n_{\times} \right]_{ij},$

Meaning

Random walk kernel counts all pairs of matching walks

λ is decaying factor for the sum to converge
Runtime of random walk kernels

Notation
- given two graphs G_1 and G_2
- n is the number of nodes in G_1 and G_2

Computing product graph
- requires comparison of all pairs of edges in G_1 and G_2
- runtime $O(n^4)$

Powers of adjacency matrix
- matrix multiplication or inversion for $n^2 \times n^2$ matrix
- runtime $O(n^6)$

Total runtime
- $O(n^6)$ - yet this can be sped up to $O(n^3)$!
Notation:

- Operator vec flattens a matrix and vec^{-1} reconstructs it.
- The Kronecker product of A and B is written as:

$$A \otimes B := \begin{bmatrix}
A_{1,1}B & A_{1,2}B & \ldots & A_{1,n}B \\
\vdots & \vdots & \ddots & \vdots \\
A_{n,1}B & A_{n,2}B & \ldots & A_{n,m}B
\end{bmatrix}$$

Product Graphs:

- Entries in the adjacency graph are 1 iff corresponding nodes are adjacent in both G_1 and G_2.
- The adjacency matrix of a product graph can be written as $A(G_1) \otimes A(G_2)$.
Sylvester Equations

Definition:
- Equations of the form
 \[M = SMT + U \]
- The matrices S, T and U are given.
- We need to solve for M.

Properties:
- Also known as discrete-time Lyapunov equation.
- Typical solution is $O(n^3)$.
- We will show how to convert graph kernels to Sylvester Equations.
Gory Maths:

- Rewrite the Sylvester equation as
 \[\text{vec}(M) = \text{vec}(SMT) + \text{vec}(U) \]

- Use the well known identity
 \[\text{vec}(SMT) = (T^\top \otimes S) \text{vec}(M), \]
 to rewrite
 \[(I - T^\top \otimes S) \text{vec}(M) = \text{vec}(U). \]

- Now we need to solve
 \[\text{vec}(M) = (I - T^\top \otimes S)^{-1} \text{vec}(U). \]

- Multiply both sides by \(\text{vec}(U)^\top \)
 \[\text{vec}(U)^\top \text{vec}(M) = \text{vec}(U)^\top (I - T^\top \otimes S)^{-1} \text{vec}(U). \]
In the equation

\[\text{vec}(U)^\top \text{vec}(M) = \text{vec}(U)^\top (\mathbf{I} - T^\top \otimes S)^{-1} \text{vec}(U). \]

substitute

\[
U = e e^\top \\
T = \lambda A(G_1)^\top \\
S = A(G_2)
\]

to get

\[
e^\top \text{vec}(M) = e^\top (\mathbf{I} - \lambda A(G_1) \otimes A(G_2))^{-1} e \\
= e^\top (\mathbf{I} - \lambda A_x)^{-1} e.
\]

This is exactly the random walk graph kernel!
Artificially high similarity scores

Walk kernels allow walks to visit same edges and nodes multiple times → artificially high similarity scores by repeated visiting of same two nodes

Additional node labels

Maha et al. 2004 add additional node labels to reduce number of matching nodes → improved classification accuracy

Forbidding cycles with 2 nodes

Maha et al. redefine walk kernel to forbid subcycles consisting of two nodes → no practical improvement
Protein function prediction

Molecular Information Flow

gene

protein sequence

protein function

e.g. enzyme

protein structure

SSFSWDNCDEGKDFAVRESLTLPEDP
HVFGLVTLSVGTVSGITSVPSSLKVLDDL
VLEKGGAVGLWIKFCDYIGSTCFEH
FCDVLDMLIPTGECPESLRTYGLPC
HCPEFKGETSYSLPEFVVEDLLELPSW
LTGNYRESVLSGKRLGCKDIAAS
LKGI

Karsten Borgwardt et al. - Classifying proteins into functional classes via graph kernels
Protein function prediction (Borgwardt et al., 2005)

- Compare 3D structure of molecules modeled as graphs
- Then classify molecules into functional classes
- In other terms, predict function from structure

The task

- Given protein structures from PDB
- A functional classification scheme, e.g. BRENDA, which defines classes of proteins with similar function
- Build a SVM classifier to predict graph class membership of newly discovered proteins from their structure
Protein graph model

protein → secondary structure → sequence → structure

Karsten Borgwardt et al. - Classifying proteins into functional classes via graph kernels
Protein graph model

Node attributes
- hydrophobicity
- polarity
- polarizability
- van der Waals volume
- length
- helix, sheet, loop

Edge attributes
- type (sequence, structure)
- length

Karsten Borgwardt et al. - Classifying proteins into functional classes via graph kernels
Evaluation: enzymes vs. non-enzymes

10-fold cross-validation on 1128 proteins from dataset by Dobson and Doig (2003); 59 % are enzymes.

<table>
<thead>
<tr>
<th>Kernel type</th>
<th>accuracy</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector kernel</td>
<td>76,86</td>
<td>1,23</td>
</tr>
<tr>
<td>Optimized vector kernel</td>
<td>80,17</td>
<td>1,24</td>
</tr>
<tr>
<td>Graph kernel</td>
<td>77,30</td>
<td>1,20</td>
</tr>
<tr>
<td>Graph kernel without structure</td>
<td>72,33</td>
<td>5,32</td>
</tr>
<tr>
<td>Graph kernel with global info</td>
<td>84,04</td>
<td>3,33</td>
</tr>
<tr>
<td>DALI classifier</td>
<td>75,07</td>
<td>4,58</td>
</tr>
</tbody>
</table>
Limitations of walks

Different graphs mapped to identical points in walks feature space (from Ramon and Gaertner, 2003)
Subtree kernel

Motivation

- Compare tree-like substructures of graphs
- May distinguish between substructures that walk kernel deems identical

Algorithmic principle

- for all pairs of nodes \(r \) from \(V_1(G_1) \) and \(s \) from \(V_2(G_2) \) and a predefined height \(h \) of subtrees:
- recursively compare neighbors (of neighbors) of \(r \) and \(s \)
- subtree kernel on graphs is sum of subtree kernels on nodes
Subtree kernel

Matching of neighborhoods

- $\delta^+(r)$ is the set of nodes adjacent to node r
- $M(r, s)$ is the set of all matchings from $\delta^+(r)$ to $\delta^+(s)$

$$M(r, s) = \{ R \subseteq \delta^+(r) \times \delta^+(s) | \left(\forall (a, b), (c, d) \in R : a = c \iff b = d \right) \land \left(\forall (a, b) \in R : \text{label}(a) = \text{label}(b) \right) \}$$

Kernel computation on pairs of trees

- Then $k_h(r, s)$ can be computed as

$$k_h(r, s) = \lambda_r \lambda_s \sum_{R \in M(r, s)} \prod_{(r', s') \in R} k_{h-1}(r', s'),$$

where λ_r and λ_s are positive scalars.
Subtree graph kernel

The subtree graph kernel for fixed height h is

$$k_{tree,h}(G_1, G_2) = \sum_{r \in V_1} \sum_{s \in V_2} k_h(r, s).$$

The subtree graph kernel for h approaching infinity:

$$k_{tree}(G_1, G_2) = \lim_{h \to \infty} k_{tree,h}(G_1, G_2),$$

which will converge for suitable choice of λ_r and λ_s.

Both versions are positive definite.

Large choice of h provides good approximation of k_{tree}.
Artificially high similarity scores

Walk kernels allow walks to visit same edges and nodes multiple times → artificially high similarity scores by repeated visiting of same two nodes

Subtree kernels suffer from tottering as well!
Cycles instead of walks?

Idea

Computing kernels based on cyclic and tree patterns (Horvarth, Gärtner, Wrobel, 2005)

Intersection kernel instead of kernel based on counts

Problems

Computation of all general cycles is NP-hard

Remedy: Consider graphs with up to k simple cycles only

Problem: Cyclic pattern kernel can only be used on datasets fulfilling this constraint.
Depth-first search paths?

Idea

- Computing kernels based on paths of length up to \(d\) starting from a node \(r\) (Swamidass et al., ISMB 2005)
- These are determined by Depth-First Search (DFS)
- Once diverged, paths may not visit the same node
- Path counts are then combined into a kernel on graphs

Problems

- does only measure local similarity in structure, not global
- DFS paths exclude edges from graph comparison that are not on these paths
All-paths kernel?

Idea

- Idea: Determine all paths from two graphs
- Compare paths pairwise to yield kernel

Advantage

- No tottering

Problem

- All-Paths kernel is NP-hard to compute.

Proof

- If determining all paths were not NP-hard, then one could check whether a Hamilton path exists of length \((n-1)\).
- However, finding a Hamilton path is known to be NP-hard. Hence, determining all paths as well.
Alternatives?

Longest paths?

Also NP-hard, same reason as for all paths.

Shortest Paths!

computable in $O(n^3)$ by the classic Floyd-Warshall algorithm ’all-pairs shortest paths’
Shortest-paths kernel

Kernel computation

- Determine all shortest paths in two input graphs G_1 and G_2
- Compare all shortest distances in $SD(G_1)$ to all shortest distances in $SD(G_2)$
- Sum over kernels on all pairs of shortest distances gives shortest-path kernel

$$K_{\text{shortest path}}(G_1, G_2) = \sum_{s_1 \in SD(G_1)} \sum_{s_2 \in SD(G_2)} k(s_1, s_2)$$
Notation

- given two graphs G_1 and G_2
- n is the number of nodes in G_1 and G_2

Kernel computation

- Determine shortest paths, in G_1 and G_2 separately: $O(n^3)$
- Compare these pairwise: $O(n^4)$
- Hence: Total runtime complexity $O(n^4)$
Discussion

Advantages

- Compares meaningful features of graphs, namely shortest paths
- Positive definite
- No tottering
- Works on all graphs (using artificial edge length)
- Computable in $O(n^4)$ \rightarrow two magnitudes faster than the random walk kernel
Disadvantages

- Does not exploit sparsity of graphs
- Leads to full matrix representations of graphs
- Ignores information represented by longer paths
- Most meaningful if edge labels represent some type of distance
equal-length shortest paths

- if two shortest paths contain a non-identical number of edges, count them as completely dissimilar

k shortest paths

- compare k shortest paths
- use algorithm by Yen 1971 for *k loopless shortest paths*
- Yen’s runtime $O(kn(m + n \times \log n))$
- runtime increases to $O(k \times n^5)$

k shortest disjoint paths

- simpler approach: iteratively apply Dijkstra’s algorithm and remove currently shortest path from graph
- compare k disjoint shortest paths
- worst case total runtime $O(k \times n^4)$
Questions

- Are there principled approaches to speed up computation of graph kernels?
- Are there better polynomial algorithms to describe graph substructures?
- Can we employ graph kernels for different tasks in graph mining?
Current

- comparing structures of proteins
- comparing structures of RNA
- measuring similarity between metabolic networks
- measuring similarity between protein interaction networks
- measuring similarity between gene regulatory networks

Future

- detecting conserved paths in interspecies networks
- finding differences in individual or interspecies networks
- finding common motifs in biological networks